A review of recent advances in fluid mechanics and their applications
Keywords:
Fluid Mechanics, Computational Fluid Dynamics (CFD), Multiphase Flows, NanofluidsAbstract
Fluid mechanics, an essential discipline in engineering and physical sciences, studies the behavior of liquids and gases at rest and in motion. This paper performs a systematic review of the most significant advances in the field (2020-2025), with the aim of synthesizing recent contributions and emerging trends. The methodology was based on the critical analysis of scientific articles indexed in Scopus, ScienceDirect, PubMed and Scielo, prioritizing research on numerical modeling, innovative applications and theoretical development. The results highlight the pivotal role of Computational Fluid Dynamics (CFD) in the simulation of complex phenomena, such as turbulence, non-Newtonian flows and multiphase interactions, as well as its integration with machine learning techniques to optimize predictions. Among the most relevant applications are advances in biomedical engineering (blood flows, medical devices), sustainable energy (nanofluids for thermal efficiency), environmental management (modeling of pollutants) and industrial processes (optimization of flow systems). In addition, the growth of multidisciplinary approaches combining fluid mechanics with materials science and artificial intelligence was identified. The study concludes that the field maintains a remarkable dynamism, driven by the demand for solutions to global challenges in sectors such as health, energy and environment. This review reinforces the relevance of fluid mechanics as a cross-cutting area and its potential to continue transforming critical technologies in the coming decades.
References
1. Akhtar, S., Hussain, Z., Nadeem, S., Najjar, I. M. R., & Sadoun, A. M. (2023a). CFD analysis on blood flow inside a symmetric stenosed artery: Physiology of a coronary artery disease. Science Progress, 106(2). https://doi.org/10.1177/00368504231180092
2. Akhtar, S., Hussain, Z., Nadeem, S., Najjar, I. M. R., & Sadoun, A. M. (2023b). CFD analysis on blood flow inside a symmetric stenosed artery: Physiology of a coronary artery disease. Science Progress, 106(2). https://doi.org/10.1177/00368504231180092
3. Anderson, J. D. . (1995). Computational fluid dynamics : the basics with applications. McGraw-Hill.
4. Cengel, Y. A., & Cimbala, J. M. (n.d.). Fluid Mechanics (4th ed.). Mc Graw Hills.
5. Chhabra, R. P. (2010). Non-Newtonian Fluids: An Introduction. In Rheology of Complex Fluids (pp. 3–34). Springer New York. https://doi.org/10.1007/978-1-4419-6494-6_1
6. Duan, J. G., Yu, C., & Ding, Y. (2023). Numerical Simulation of Sediment Transport in Unsteady Open Channel Flow. Water, 15(14), 2576. https://doi.org/10.3390/w15142576
7. García-Gutiérrez, A., Gonzalo, J., López, D., & Delgado, A. (2022). Advances in CFD Modeling of Urban Wind Applied to Aerial Mobility. Fluids, 7(7), 246. https://doi.org/10.3390/fluids7070246
8. Goyal, M. (2023). Thermophysical Properties and Heat Transfer Performance in Nanofluids: A Comprehensive Review and CFD Analysis. International Journal for Research in Applied Science and Engineering Technology, 11(5), 4398–4420. https://doi.org/10.22214/ijraset.2023.52652
9. Kundu, P. K., Cohen, I. M., Dowling, D. R., & Capecelatro, J. (2024). Mecánica de Fluidos (7th ed.). Academic Press.
10. Liang, F., Wang, W., Zhu, S., Hu, Y., Zhao, Z., Tan, Y., Yu, G., Hou, J., & Li, J. (2025). Nanofluids application in enhanced oil recovery process-opportunities and challenges. Arabian Journal of Chemistry, 18(1), 106053. https://doi.org/10.1016/j.arabjc.2024.106053
11. Lynch, S., Nama, N., & Figueroa, C. A. (2022). Effects of non-Newtonian viscosity on arterial and venous flow and transport. Scientific Reports, 12(1), 20568. https://doi.org/10.1038/s41598-022-19867-1
12. Michaelides, E., Crowe, C. T., & Schwarzkopf, J. D. (2016). Multiphase Flow Handbook. CRC Press. https://doi.org/10.1201/9781315371924
13. Moukalled, F., Mangani, L., & Darwish, M. (2016). The Finite Volume Method in Computational Fluid Dynamics (Vol. 113). Springer International Publishing. https://doi.org/10.1007/978-3-319-16874-6
14. Munson, B. R., Okiishi, T. H., Huebsch, W. W., & Rothmayer, A. P. (2013). Fundamentals of Fluid Mechanics (7th ed.). Wiley.
15. Paris, M., Dubois, F., Bosc, S., & Devillers, P. (2023). Integrating Wind Flow Analysis in Early Urban Design: Guidelines for Practitioners. Journal of Contemporary Urban Affairs, 7(2), 194–211. https://doi.org/10.25034/ijcua.2023.v7n2-12
16. Pope, S. B. (2000). Turbulent Flows. https://elmoukrie.com/wp-content/uploads/2022/04/pope-s.b.-turbulent-flows-cambridge-university-press-2000.pdf
17. Ptasinski, P. K., Nieuwstadt, F. T. M., van den Brule, B. H. A. A., & Hulsen, M. A. (2001). Experimentos en flujo turbulento en tuberías con aditivos poliméricos con máxima reducción de arrastre. Flow, Turbulence and Combustion, 66(2), 159–182. https://doi.org/10.1023/A:1017985826227
18. Rojas, F. J., Anicama, V., Cruz, C. D. La, & Cataño, M. (2023). Análisis del uso de dinámica de fluidos computacional (CFD) para la implementación de un dispositivo con chorro de aire para la selección de papa amarilla Tumbay. Información Tecnológica, 34(2), 31–42. https://doi.org/10.4067/s0718-07642023000200031
19. Rudniak, L., Machniewski, P. M., Milewska, A., & Molga, E. (2004). CFD modelling of stirred tank chemical reactors: homogeneous and heterogeneous reaction systems. Chemical Engineering Science, 59(22–23), 5233–5239. https://doi.org/10.1016/j.ces.2004.09.014
20. Shaheed, R., Mohammadian, A., & Yan, X. (2022). Numerical Simulation of Turbulent Flow in Bends and Confluences Considering Free Surface Changes Using the Volume of Fluid Method. Water, 14(8), 1307. https://doi.org/10.3390/w14081307
21. Silva-Yumi, J., Moreno Romero, T., & Chango Lescano, G. (2021). Nanofluids, Synthesis and Stability - Brief Review. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M. https://doi.org/10.18502/espoch.v1i2.9520
22. Soto-Arteaga, C. E., Gutiérrez-López, E. D., Esqueda-Barrón, Y., & Díaz de León, J. N. (2023). Breve revisión sobre la síntesis de los nanomateriales más usados como soportes y catalizadores en diversas aplicaciones. Mundo Nano. Revista Interdisciplinaria En Nanociencias y Nanotecnología, 16(31), 1e–24e. https://doi.org/10.22201/ceiich.24485691e.2023.31.69777
23. Valdivia-Silva, J., Pérez-Tulich, L., Flores-Olazo, L., Málaga-Julca, M., Ubidia, A., Fleschman, A., & Guio, H. (2020). Desarrollo de un sistema microfluidico (lab-on-achip) accesible y de bajo costo para detección de células tumorales circulantes de cáncer de mama. ACTA MEDICA PERUANA, 37(1). https://doi.org/10.35663/amp.2020.371.967
24. Versteeg, H. K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics Second Edition. www.pearsoned.co.uk/versteeg
25. Vlachopoulos, J., & Polychronopoulos, N. D. (2019). RHEOLOGY AND TECHNOLOGY OF POLYMER EXTRUSION First Edition. www.polydynamics.com
26. Wajihah, S. A., & Sankar, D. S. (2023). A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries. Archive of Applied Mechanics, 93(5), 1771–1796. https://doi.org/10.1007/s00419-023-02368-6
27. White, F. M., & Xue, H. (2022). Fluid Mechanics (9th ed.). Mc Graw Hills.
28. Yang, X., Xi, T., Qin, Y., Zhang, H., & Wang, Y. (2024). Computational Fluid Dynamics–Discrete Phase Method Simulations in Process Engineering: A Review of Recent Progress. Applied Sciences, 14(9), 3856. https://doi.org/10.3390/app14093856
29. Campoverde León, J. A., Espinoza Loja, N. E., Gómez Ortega, D. B., León Cueva, W. P., & Sigsig Cabrera, D. J. (2024). Efecto de la humidificación en la exportación de banano. Código Científico Revista de Investigación, 5(1), 551–560. https://doi.org/10.55813/gaea/ccri/v5/n1/396
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Milene Paulette Marca Laime, Samantha Lizbeth Matamoros Chuchuca, Nixon Joel Rogel Merchan, León Cueva Wilson Patricio, Delly Maribel San Martin Torres (Autor/a)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los artículos publicados en la revista se distribuyen bajo la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a terceros descargar, copiar, distribuir, adaptar y reutilizar una obra, incluso con fines comerciales, siempre que se otorgue el crédito adecuado al autor original.